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ABSTRACT

Analyzing a set of ensemble seasonal reforecasts for 1958–2017 using CFSv2, we evaluate the predictive

skill of the U.S. seasonal mean precipitation and examine its sources of predictability. Our analysis is for

each of the three periods of 1958–78, 1979–99, and 2000–17, corresponding to the positive phase of the

Pacific decadal oscillation (PDO) during 1979–99 and negative ones before and after. The ensemble re-

forecasts at two-month lead reproduce the spatial distribution of winter precipitation trends throughout

the 60 years and the continental-scale increase of summer precipitation since 2000. The predicted signal-

to-noise (S/N) ratio also reveals greater predictability in the post-1979 period than during 1958–78. A

maximized S/N ratio EOF analysis is applied to the ensemble seasonal precipitation predictions. In winter

and spring, the most predictable patterns feature a north–south dipole throughout United States. The

summer and fall patterns are dominated by the anomalies in central and southern United States,

respectively. In verification with observations, the winter–spring patterns are more skillful. ENSO

influences on these predictable patterns are most dominant in winter and spring, but other oceanic factors

also play an active role during summer and fall. The multidecadal change of the U.S. precipitation pre-

dictability is attributable to the low-frequency modulation of the ENSO predictability and the influences

of other major climate modes. PDO can be a dominant factor associated with enhanced prediction skill in

1979–99 and reduced skill in 1958–78. Since the 2000s, the forcing from the SST anomalies in the tropical

North Atlantic with opposite sign to those in the tropical Pacific becomes a significant factor for the U.S.

summer precipitation prediction.

1. Introduction

Severe floods and droughts are among the most costly

natural disasters in the United States (e.g., Cayan et al.

1999; Perry 2000; Cook et al. 2007). They pose serious

risks to human lives and property and impact the food

and water supplies. Furthermore, landsides (e.g., Biasutti

et al. 2016), wildfires (e.g., Crockett andWesterling 2018),

and heat waves (e.g., Oswald 2018) induced by droughts

or floods cause major environmental damage and

adverse economical and societal consequences. Since

anomalous precipitation strongly influences the onset,

intensity, duration, and demise of both floods and

droughts, there have been considerable efforts toward

understanding the mechanisms and predictability of

abnormal precipitation in the United States, ranging

from extreme weather causing flash flooding to pro-

longed rainfall deficits that sustain multiyear droughts.

Many previous studies have identified ENSO as a

major source of U.S. seasonal precipitation anomalies

(e.g., Ropelewski andHalpert 1986; Barnston and Smith

1996; Dai andWigley 2000; Hoerling and Kumar 2003;

Quan et al. 2006; Seager and Hoerling 2014). For

instance, the U.S. drought study establishes that La

Niña events tend to cause major droughts in the

southwest United States, northern Mexico, and the

southern Great Plains (e.g., Mason and Goddard 2001;

Mo and Lettenmaier 2018). Extended AMIP simula-

tions forced with observed SST confirm the La Niña–
U.S. drought paradigm (see, e.g., Feng et al. 2008;

Herweijer et al. 2006; Schubert et al. 2016). In this sce-

nario, the cold equatorial SST anomalies generate aCorresponding author: Bohua Huang, bhuang@gmu.edu
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northeastward-propagating atmospheric wave train with

an anticyclonic anomaly extending to the North America

(see, e.g., Seager et al. 2014). This atmospheric telecon-

nection pattern largely reverses sign during El Niño (e.g.,

Ropelewski and Halpert 1986; L’Heureux et al. 2015,

2017), although there is still notable asymmetry between

the two (e.g., Chiodi andHarrison 2015; Chen et al. 2017).

Beyond ENSO, other SST anomalies in the Pacific

also play active roles. Using 70-yr (1930–2000) AMIP

ensemble simulations, Schubert et al. (2004) link the

Pacific decadal SST fluctuations (e.g., Zhang et al. 1997)

with low-frequency precipitation variations of 6 years

or longer in the Great Plains, especially during the

multiyear Dust Bowl (1932–39). Several studies further

note that the SST anomalies in the northwestern tropi-

cal Pacific are effective in forcing atmospheric plane-

tary waves propagating into North America. Hoerling

and Kumar (2003) found that, after the strong 1997/98

El Niño, remnant warm SST anomalies in the western

Pacific and Indian Oceans induced the multiyear U.S.

drought from 1998 to 2002. Examining a set of multi-

model AMIP ensemble simulations for 1950–99, Quan

et al. (2006) found that U.S. fall temperature anomalies

can be skillfully predicted by the SST variability in the

subtropical western Pacific Ocean and the South China

Sea. Seager et al. (2015) showed that the 2012/13 and

2013/14 winter droughts in California were related to a

persistent warm-west/cool-east SST dipole in the tropi-

cal Pacific. Hartmann (2015) further demonstrated that,

in the winter of 2013/14, persistent warm SST anomalies

extending from the North Pacific into the northwestern

tropical Pacific generated an anomalous ridge in the

northeast Pacific with a downstream trough over central

North America. In addition to the dominant role of the

tropical and subtropical SST anomalies, Ting and Wang

(1997) found that the SST anomalies in the North Pacific

can modulate the atmospheric jet stream to influence

the U.S. summer precipitation.

Many studies demonstrated the roles played by the

Atlantic multidecadal variability (AMV) (e.g., Enfield

et al. 2001; Schubert et al. 2009; Findell and Delworth

2010; Kushnir et al. 2010). Interestingly, AMV also in-

fluences the U.S. precipitation mainly through its sub-

tropical branch during summer. Kushnir et al. (2010)

showed that a positive AMV reduces U.S. summer

precipitation because its warm tropical branch weakens

the subtropical anticyclone in the Atlantic Ocean,

which reduces the northward moisture transport at its

western end into North America. Indeed, Wang et al.

(2008) found that the fluctuation of the Atlantic warm

pool, located in the western tropical North Atlantic,

is significantly correlated with the summer precipita-

tion over the central United States. Nigam et al. (2011)

argued thatAMVmight bemore influential tomultiyear

droughts in the Great Plains than Pacific SST anomalies.

The interference of the atmospheric responses in-

duced by these SST patterns may be as important as

the individual ones in causing and modulating the

U.S. precipitation conditions (e.g., Wang et al. 2014).

Hu and Huang (2009) found that a La Niña contempo-

rary to a negative phase of the Pacific decadal oscilla-

tion (PDO) is more likely to cause a stronger drought

in the Great Plains whereas an El Niño combined with

a positive PDO phase enhances a wet condition. Mo

et al. (2009) noted that AMV tends to enhance U.S.

drought if its tropical Atlantic branch has the opposite

sign to the ENSO state. Several studies based on U.S.

CLIVAR Drought Working Group idealized climate

model simulations (e.g., Weaver et al. 2009) also showed

that, although the direct influence of the AMV on U.S.

drought is small, it can modulate the remote ENSO ef-

fect on U.S. rainfall and drought especially when the

SST anomalies in the tropical Pacific and in the North

Atlantic are in opposite phase. Therefore, the combi-

nation of a cold tropical Pacific with a warm tropical

North Atlantic forms the strongest oceanic forcing to

U.S. drought (e.g., Schubert et al. 2008).

Although the AMIP simulations with perfect SST

information identify the sources of the oceanic forcing

to the U.S. precipitation anomalies and provide its po-

tential predictability, they cannot determine how much

of the potential is realizable. Some studies estimate the

seasonal predictability in the AGCM framework. For

instance, Goddard andMason (2002) conductedAGCM

seasonal runs with prescribed persistent SST anomalies.

On the other hand, Quan et al. (2006) developed linear

regression models from large ensemble AMIP runs be-

tween the leading patterns of the SST anomalies and

U.S. precipitation or temperature anomalies at one-

season lag, which showed that nearly all the AGCM skill

in theU.S. precipitation can be explained by the tropical

SST patterns associated with ENSO. These assessments,

however, usually involve statistical assumptions and

simplifications. Moreover, an AMIP run tends to exag-

gerate and distort the atmospheric response in certain

areas due to its lack of air–sea feedback (e.g., Zhu and

Shukla 2013).

The natural next step is to investigate the extent of

the potential predictability that can be realized in ini-

tialized seasonal climate predictions. There have been

major progresses of the dynamical seasonal prediction

during the past 25 years (e.g., Barnston et al. 1994; Ji

et al. 1994; Stockdale et al. 1998, 2011; Saha et al. 2006,

2014; Kirtman et al. 2014). Current seasonal forecast

systems can predict certain oceanic and atmospheric

anomalies at seasonal lead times (e.g., Jin et al. 2008;
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Kirtman et al. 2014; Huang et al. 2017a). Jia et al. (2015)

evaluated the seasonal prediction skill of the precipita-

tion and 2-m air temperature over global land domain

from a set of seasonal reforecasts for the period of

1980–2012 using two versions of the Geophysical Fluid

Dynamics Laboratory (GFDL) coupled forecast sys-

tems with the purpose of examining the effect of model

resolution, while exploring the sources of the prediction

skills. Becker and van den Dool (2016) assessed the prob-

abilistic skills of the North American Multimodel Ensem-

ble (NMME) seasonal reforecasts (1982–2010) for ENSO

andNorthernHemisphere (NH) SST, tropical precipitation

and 2-m air temperature over the NH land. There have

also been studies of the seasonal reforecasts focused on the

prediction skill of the U.S. precipitation and its connection

to the predictable signals in other variables. Recently, Chen

et al. (2017) examined the composite prediction patterns of

the U.S. precipitation and temperature by the NMME

reforecasts during the El Niño and La Niña events in

1982–2010. They found that the general characteristics

of the ENSO-induced precipitation anomalies can be

predicted reasonably well with both deterministic and

probabilistic measures.

A potential limitation of these previous studies is

that the datasets of current seasonal reforecasts gen-

erally cover relatively short time spans. Chen et al.

(2017) found that their NMME reforecast composite

for 1982–2010 bear closer resemblance to the observed

composite derived from a longer period (1950–2010)

than from its matching period. They attribute this

paradoxical result as a manifestation of inadequate

sampling in observations for the latter period. With

the given number of the ENSO events in 1982–2010,

NMME achieves sufficient sampling for a stable re-

forecast composite through its large number of mul-

timodel ensemble members while the corresponding

sampling from observations, equivalent to an ensemble

size of one, is insufficient. In addition to the sampling

issue, more importantly, the short span of the refor-

ecasts does not provide adequate record to evaluate the

effect of the decadal and multidecadal variability on

the seasonal predictability (e.g., Ding et al. 2019). A

similar limitation may also affect the sufficiency of the

statistical postprocessing to improve the skill and re-

liability of the ensemble forecasting systems. For instance,

most hybrid statistical–dynamical seasonal forecast sys-

tems of North American temperature and precipitation

(e.g., Strazzo et al. 2019) are calibrated with observa-

tions of the past 30 years or so due to the limited span of

reforecast datasets.

In this study, we evaluate the prediction skill of the

U.S. seasonal precipitation and examine its sources

of predictability using a set of ensemble seasonal

reforecasts from the NCEP Climate Forecast System,

version 2 (CFSv2), covering 1958–2017. Conducted at

the Center for Ocean–Land–Atmosphere Studies

(COLA), the 60-yr CFSv2 reforecasts not only pro-

vide more adequate sampling of the observed in-

terannual signals (e.g., historical ENSO events) but

also allow us to examine the influences of the

decadal–multidecadal climate variability and the

long-term trends of climate change on the seasonal

prediction and predictability of the U.S. precipita-

tion. We first identify the spatial patterns of the

predictable signals in the United States from the re-

forecasts without presumption, then evaluate their

skill and identify the possible sources of predictabil-

ity. This approach is different from Chen et al.’s

(2017) and Strazzo et al.’s (2019) a priori focus on the

ENSO-induced U.S. precipitation. We also use a method

different from Jia et al. (2015) to identify the predictable

patterns and concentrate on the contiguous United

States (CONUS).

The rest of the paper is structured as the following.

Section 2 describes the version of the CFSv2 reforecast,

the observational datasets for verification, and the

analysis methodology. Section 3 examines some basic

statistical characteristics of the reforecast CONUS pre-

cipitation. Section 4 analyzes the most predictable pat-

terns of the CONUS precipitation in different seasons

and evaluates their skills. Section 5 further identifies the

potential sources of these predictable patterns. Section 6

gives a summary and a discussion.

2. CFSv2 60-yr reforecast dataset and analysis
method

a. CFSv2 60-yr reforecast

CFSv2 is a global coupled general circulation model

that has been used for operational seasonal prediction

at NCEP since April 2011 (Saha et al. 2014). Its atmo-

spheric component is theGlobal Forecast System (GFS)

with a spectral horizontal resolution of T126 (105-km

grid spacing) and 64 vertical levels in a hybrid sigma-

pressure coordinate. The oceanic component is the

GFDL Modular Ocean Model version 4 (MOM4)

(Griffies et al. 2004), which is configured with 40 vertical

levels in a z coordinate and a horizontal tripolar grid

with a resolution of approximately 0.58 latitude 3 0.58
longitude poleward of 308 latitudes, increasing to 0.258
latitude within 108S–108N). The sea ice component is a

3-layer dynamical sea ice model (Winton 2000) and the

land component is the Noah land surface model (Ek

et al. 2003). The land (sea ice) model is directly coupled

to the atmospheric (ocean) model on its native Gaussian
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(tripolar) grid with surface fluxes transferring through

their interface on every time step of themodel integration.

The atmospheric and ocean–sea ice components exchange

surface momentum, heat, and freshwater fluxes, as well as

SST and surface information on sea ice every 30min.More

details of theCFSv2 configuration and coupling procedure,

as well as the major subscale physical parameterizations

of the component models, can be found in Saha et al.

(2010, 2014).

The version of the CFSv2 used in this study is slightly

different from the one for the NCEP operational sea-

sonal prediction and the CFS Reanalysis (CFSR) and

Reforecast (CFSRR) (Saha et al. 2014). Specifically, we

have corrected a coding error in the original CFSv2 that

misidentifies the sea ice covered areas in the coupler,

resulting in discrepancies in the surface fluxes passing

from the atmospheric to the oceanic component over

the northern North Atlantic. The correction of this

error restores consistency of air–sea surface flux ex-

change over the global ocean domain and improves

the sea ice coverage and SST simulation in the northern

oceans (Huang et al. 2015). Based on a series of decadal

test runs, we found that the original setting of the albedo

parameters causes a gradual reduction of ice thickness

even after the correction of the coding error. As a result,

the sea ice is unrealistically thin after a few years’ in-

tegration and the ice coverage becomes seasonal in most

places. Therefore, we have increased the dry sea ice al-

bedo from 0.60 to 0.66 in this set of seasonal reforecasts

and reduced the temperature range of transition from

dry to wet sea ice albedo. Our adjustment of the sea ice

albedo parameters leads to realistic ice thickness simu-

lation, permanent ice distribution and improved an-

nual cycle of total ice volume in the northern ocean, as

demonstrated in Huang et al. (2015).

Using this version of CFSv2, we produced a set of

ensemble reforecasts with 12-month duration initialized

at the beginning of January, April, July, and October,

respectively, for 1958–2016 and January and April of

2017 (Huang et al. 2017a). Our initialization of the

coupled prediction is also different from CFSRR. For

the whole period, the ocean initial states are from the

instantaneous restart files of the ECMWF Ocean Re-

analysis System 4 (ORA-S4) with a set of five-member

ensemble assimilation runs (Balmaseda et al. 2013),

which are interpolated linearly to the MOM4 grid. Our

previous studies (Huang et al. 2015) have shown that

the CFSv2 runs initialized by the interpolated monthly

fields of the ECMWF ocean reanalysis (a predecessor

to ORA-S4) do not generate extra climate drift or ini-

tial shock, compared to those initialized with CFSR. In

this study, we also do not see a major increase in model

bias with the ORA-S4 instantaneous initial states. This

is possibly because the NEMO ocean model (Madec

2008) used to produce the ECMWF analysis has a hor-

izontal resolution and vertical levels largely compati-

ble to those of MOM4 used in CFSv2. Our studies (e.g.,

Zhu et al. 2012; Huang et al. 2017a; Shin et al. 2019) have

also shown that the CFSv2 initialized with the ECMWF

monthly ocean reanalysis are comparable and, in some

cases, slightly better seasonal forecast skills of ENSO

and Asian monsoon than those from some other ocean

reanalysis products, including CFSR.

The initial conditions for other component models

were assembled from several different data sources be-

fore and after 1979. Starting in 1979, the atmosphere,

land and sea ice initial states were taken from the restart

files of the CFS Reanalysis (CFSR) (Saha et al. 2010).

For 1958–78, the atmospheric initial states are interpo-

lated from the ERA-40 atmospheric reanalysis (Uppala

et al. 2005). The land initial states are interpolated

from the Global Land Data Assimilation System, ver-

sion 2.0, analysis produced by the National Aeronautics

and Space Administration (Rui and Beaudoing 2015).

We also use a specified annual cycle of sea ice states

for 1958–78. An ensemble reforecast of 20 members

is generated by matching each of the five ocean initial

states at 0000 UTC first of the initial month with the

atmospheric and land initial states at 0000 UTC of the

first four days while the sea ice initial state is fixed at

0000 UTC first for all ensemble members. More details

of the initialization procedure are given in Huang et al.

(2017a), which also presented an evaluation of the

ENSO prediction skill for the period of 1958–2014.

In this study, the monthly anomalies of all predicted

variables are derived as departures from the monthly

climatology for each subset of reforecasts initialized

in the same calendar month. Furthermore, we define

separate monthly climatologies for each of the three

periods of 1958–78, 1979–99, and 2000–17 to take into

account the influence of multidecadal variations and cli-

mate change. The time-dependent CO2 concentrations

are prescribed based on historical data for 1958–2009

and a future extrapolation of the concentration values is

given with a constant growth rate of 2 ppmvyr21 since

2010 (Huang et al. 2015). On the other hand, the three

periods roughly correspond to the different phases of

the PDO/interdecadal Pacific oscillation (IPO; Deser

et al. 2004), associated with the two major climate shifts

in the late 1970s (Trenberth and Hurrell 1994) and

early 2000s (Barnston and Lyon 2016), and the three dry–

wet–dry periods of the U.S. precipitation (Dai 2013).

Our analysis is focused on the seasonal precipitations

in CONUS for winter [December–February (DJF)],

spring [March–May (MAM)], summer [June–August

(JJA)], and fall [September–November (SON)] predicted
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at 2-month lead. The 2-month lead refers to the first two

months of the model integration from its initial state

before the predicted seasonal mean is calculated using

the model output from months 3 to 5. For example, the

DJF anomalies are derived from the reforecasts initial-

ized in previous October.

For model verification, the Climate Prediction Center

(CPC) daily unified gauge-based analysis of precipita-

tion at 0.258 latitude 3 0.258 longitude (Chen et al.

2008) is used as the observations. The observed SST

used for verification is the global monthly Extended

Reconstructed SST, version 5 (ERSSTv5; Huang et al.

2017b), for 1958–2017 on a 28 latitude 3 28 longitude
grid. The mean sea level pressure (MSLP) and 200-hPa

geopotential height data are from the ERA-40 and

ERA-Interim reanalyses for 1958–78 and 1979–2017,

respectively. Monthly anomalies of the observational

datasets for the 1958–78, 1979–99, and 2000–17 periods

are also calculated with respect to the monthly clima-

tologies for each of the periods, respectively.

In addition, we have compared the precipitation of

our reforecasts with that from a set of ensemble AMIP

simulations using GFS (atmospheric component of

CFSv2) forced with the observed SST from January

1957 to December 2018, to be referred to as the GFS

simulations hereafter. The GFS simulations have a to-

tal of 101 members with slightly different atmospheric

initial states (Hu et al. 2017). These GFS runs can be

considered as idealized predictions from uninitialized

atmosphere–land states but with ‘‘perfect’’ SST skill

at any lead time. For comparison, we have also used

the 10-member initialized seasonal ensemble reforecast

from the Community Climate System Model, version

4 (CCSM4), for 1982–2017. The CCSM4 reforecast is

chosen because it is the only NMME Phase-II dataset

extending to 2017 and with a total record equally span-

ning the last two periods of our reforecasts.

b. Maximum signal-to-noise EOF analysis

In addition to a general evaluation of the model pre-

cipitation characteristics and prediction skill, we use

the empirical orthogonal function (EOF) analysis with

maximized signal-to-noise ratio (MSN EOF) to identify

the most predictable patterns of the U.S. precipitation

from the CFSv2 ensemble reforecasts. The MSN EOF

is originally designed to extract the leading patterns of

the forced response from an ensemble of simulations

under a common forcing such as the prescribed SST

(e.g., Venzke et al. 1999; Huang 2004). For an ensemble

simulation with a moderate size of the ensemble mem-

bers, its ensemble mean is composed of both signal and

residual internal noise. As a result, the conventional

EOF modes of the ensemble mean may still contain a

substantial amount of noise variance and not accurately

represent the dominant patterns of the signal. On the

other hand, the MSN EOF analysis takes into account

the noise characteristics estimated from the departures

from the ensemble mean in deriving its leading modes

so that they maximize the ratios between the variances

of signal and noise. Compared to the conventional

EOF modes, the MSN EOF modes estimate the leading

patterns of the signals more accurately. The reader is

referred to Venzke et al. (1999) for a detailed descrip-

tion of the formulation and procedure of the MSN EOF

analysis.

Applied to the time sequence of the ensemble

reforecast fields with a given lead time from initiali-

zation, the leading MSN EOF modes can be explained

as the time–spatial patterns of the most predictable

signals of the ensemble mean of reforecasts. The MSN

EOF approach has been used effectively in identifying

the predictable patterns from ensemble reforecasts by

previous studies (e.g., Hu and Huang 2007; Liang et al.

2009; Zhu et al. 2015; Zhang et al. 2018a; Shin et al.

2019). In our study, only the first MSN EOFmodes, that

is, the most predictable patterns, are discussed. We

further measure the representativeness of the MSN

EOF pattern by projecting the pattern to each of the

ensemble members and comparing the time series of

the MSN EOF mode [i.e., MSN principal component

(PC)] with these projected time series. One should also

note that the derived predictable patterns are prop-

erties of the forecast system because the MSN EOF

analysis depends only on the reforecasts. Whether

these modes connect to reality (i.e., have predictive

skill) should be evaluated by their verification against

observations. For this purpose, we regress the first

MSN PCs with the observations and examine the re-

semblance of the resulting regressional patterns with

the corresponding MSN EOF patterns. This approach

is adopted because the MSN PCs may still represent

the predictable temporal variations in observations

even when the MSN EOF patterns are distorted by

model systematic bias.

3. General statistics of U.S. precipitation in
seasonal reforecasts

In this section, we describe some gross statistical fea-

tures of the U.S. precipitation in the observations and

the 60-yr reforecast dataset. Figure 1 shows the spatial

distribution of the precipitation standard deviation in

CONUS during winter (DJF) for observations and the

reforecasts respectively in 1958–78, 1979–99, and 2000–

16. Observationally, high precipitation variability is lo-

cated in the southeastern United States centered near
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the Gulf of Mexico coast and in the western United

States extending from the Pacific coast, including most

of the Pacific Northwest, with a broad area of low vari-

ability in between (,0.4mmday21, shaded with purple

color) in the central United States and a part of the

Midwest (left panels, Fig. 1). In general, the areas of

high standard deviation are also associated with those

of large mean precipitation in this season (not shown).

The distribution of the DJF precipitation variability

bears certain resemblance to the annual mean pattern

shown in Seager et al. (2014) and is well simulated by

the reforecasts, though with somewhat reduced magni-

tudes of the regional peaks (right panels, Fig. 1). Among

the three periods, the 1979–99 episode showed en-

hanced variations in the southeastern United States in

observations (left panel, Fig. 1b) but not in the reforecasts

(right panel, Fig. 1b).

The observed precipitation standard deviation in

summer (JJA) is characterized by a strong east–west

contrast (left panels, Fig. 2), with the region of small

fluctuation (shaded with purple color) shifted from

the central United States in winter to the west in sum-

mer. In addition to the large fluctuations in the southeast

near the coast, there is a distinctive center over the

Great Plains, with its maximum above 1.0mmday21

located near Kansas and Missouri, which is consistent

with previous studies (e.g., Ting and Wang 1997). The

reforecasts also reproduce these general features re-

alistically (right panels, Fig. 2). In the observations, and

to a lesser extent in the reforecasts, the fluctuations

FIG. 1. The standard deviation of the winter (DJF) precipitation for (a) 1958–78, (b) 1979–99, and (c) 2000–16

from (left) observations and (right) the reforecasts. The standard deviation of the reforecasts is the average of all

individual ensemble members. The color bar for the shading is located at the bottom. The unit is mmday21.
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intensify in both the southeast and the Great Plains

during 1979–99 than the earlier and later periods al-

though the interannual variation near the coast of the

Gulf of Mexico in 2000–17 is greater than that in 1979–

99. The reforecasts also simulate reasonably well the

patterns of the precipitation standard deviations in

the two transitional seasons (MAM and SON) with an

underestimate of the regional maximum in magnitudes

(figures not shown). Therefore, the reforecasts repro-

duce the seasonality of the precipitation variance dis-

tributions realistically.

Figure 3 shows the spatial distribution of the lin-

ear trends of the DJF precipitation in each of the three

periods for the observations and for the ensemble

mean reforecasts. The linear trends are derived from

the seasonal mean data for each of the three periods

separately. Observationally, winter precipitation in-

creases during all three periods in the eastern and

northeast states, as well as in the Pacific Northwest

(left panels, Fig. 3), suggesting a persistent tendency

throughout the whole period. This persistent pattern is

reproduced by the reforecasts to a large extent (right

panels, Fig. 3), although the magnitudes are generally

weaker during the first two periods, especially in 1979–

99 (comparing the left and right panels, Fig. 3b). To a

certain extent, the model also reproduces the observed

drying tendency in the southwestern region. Compared

with the positive trends, the negative trends have a more

variable spatial distribution with time, which extended

from the western Texas toward Colorado in 1958–78

FIG. 2. The standard deviation of summer (JJA) precipitation for (a) 1958–78, (b) 1979–99, and (c) 2000–17 from

(left) observations and (right) the reforecasts. The standard deviation of the reforecasts is the average of all in-

dividual ensemble members. The color bar for the shading is located at the bottom. The unit is mmday21.
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(left panel, Fig. 3a) but shifted to a more east–west band

stretching from Arizona to the coastal region of the

Gulf of Mexico, showing a notable north–south contrast

between the increasing and decreasing precipitations

(left panel, Fig. 3b). During 2000–16, the region of the

negative trends migrated to the area of eastern Texas,

Oklahoma, and Arkansas, more inland from the Gulf

Coast (left panel, Fig. 3c). The reforecasts simulate the

general location of the negative trends in the southwest

(right panels, Fig. 3) and reproduces the zonal dry band,

as well as the north–south contrast, during 1979–99

(right panel, Fig. 3b) but did not reproduce the inland

migration of the drying zones, resulting in the east–west

contrast with the negative (west) and positive (east)

trends since the 2000s (right panel, Fig. 3c).

The reforecasts are less successful in reproducing

the spatial distribution of the observed trends in JJA

for the two early periods and the model trends were

significantly weaker (Figs. 4a,b). This is also the case for

the MAM and SON seasons (not shown). During 2000–

17, however, the reforecasts reproduce substantial pos-

itive trends in the observations over CONUS in MAM

(not shown) and JJA (Fig. 4c).

Overall, our results show that the reforecasts re-

produce the long-term trends in the winter season

when persistent positive tendencies occurred in the

southeastern and eastern United States and the Pacific

Northwest throughout the 60 years, while negative

tendencies appeared in the southwestern areas. The

model also reproduces the positive precipitation

FIG. 3. Spatial distribution for the linear trend of the seasonally averagedDJF precipitation anomalies for (left) the

observations and (right) the ensemble mean reforecasts for (a) 1958–78, (b) 1979–99, and (c) 2000–16. The shading

scale is shown at the bottom of the figure. The unit is 0.1mmday21 decade21.
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tendency since the 2000s in MAM and JJA. In general,

the long-term trends in the observed seasonal pre-

cipitation could be due to the trends in SST, greenhouse

gases, and other external forcings, as well as due to the

atmospheric internal variability. For the model ensem-

ble mean, the trends are mainly due to the former two.

In the reforecasts, it also measures the model’s capa-

bility of maintaining the long-term shift of the basic

climate state in the duration of the seasonal predictions

(e.g., Barnston and Lyon 2016).

It should be noted that the trend patterns of the

reforecasts described here are different from the AMIP-

simulated annual mean precipitation trend for 1901–

2009 by Seager et al. (2014, their Fig. 1e), which is

characterized by the north–south contrast somewhat

similar to our DJF pattern in 1979–99 (right panel,

Fig. 3b). Our observed trends are also different from the

observed pattern of century-long trend in Peterson et al.

(2013, their Fig. 3b), which features enhanced precipi-

tations in the central and northeast United States, as

well as the Pacific Northwest, but reduced precipitations

in the western United States from Arizona and New

Mexico to Montana and in the southeast surrounding

the Florida Panhandle. One reason of these differences

may be the way we calculate the precipitation anomalies

for the three periods with respect to their own clima-

tologies separately, which might have partially removed

some of the long-term trends shown in the other studies.

Moreover, our calculation might also have interpreted

parts of the multidecadal variability during 1958–2017

FIG. 4. Spatial distribution for the linear trend of the seasonally averaged JJA precipitation anomalies for (left) the

observations and (right) the ensemble mean reforecasts for (a) 1958–78, (b) 1979–99, and (c) 2000–17. The shading

scale is shown at the bottom of the figure. The unit is 0.1mmday21 decade21.
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as trends within some of the periods, especially when the

signs of the trends change from one period to the other.

Figure 5 shows the correlation skill of the seasonal

mean precipitations predicted by the ensemble mean

reforecasts, verified against the CPC analysis. Before the

correlation analysis, the long-term trends as described

above have been removed from the seasonal mean

precipitation anomalies for both the reforecasts and

the observations, and the detrended seasonal anomalies

will be used in further analysis hereafter. In general,

regions of positive correlations passing the 95% signifi-

cance test as shown in Fig. 5 are quite spotty. During

winter and spring, skillful predictions are mostly in the

southwest from 1958 to 1999 (left and middle panels,

Figs. 5a and 5b). In DJF, the skill is also relatively high

in the southeast and east for 1979–99 (middle panel,

Fig. 5a) but generally reduced in 2000–16 throughout

CONUS (right panel, Fig. 5a). In MAM, however,

significant skills appear in the northeast throughout

1979–2017 (middle and right panels, Fig. 5b). During

summer and fall, there is little skill in the predictions

for 1958–78 (left panels, Figs. 5c and 5d). During 1979–

99, however, a substantial area of skillful predictions

emerges in the northwest in summer (middle panel,

Fig. 5c) and, to a lesser extent, in fall (middle panel,

Fig. 5d). During 2000–17, positive correlations are shif-

ted to the central and south United States in summer

(right panel, Fig. 5c) and become more significant in

fall (right panel, Fig. 5d).

4. Seasonal and interdecadal change of the
signal-noise ratio and predictable patterns of
the U.S. precipitation

In this section, we first show the spatial distributions

of the signal-to-noise (S/N) ratio estimated from the

ensemble mean standard deviation and that from

the ensemble departures for the four seasons during the

three periods (Fig. 6). The S/N ratio is generally larger

in winter–spring than in summer–fall and also shows

clear seasonal dependence in geographical distribution.

In DJF, larger S/N values are located to the south of

358N and north of 458N, with a band of minimum around

408N (Fig. 6a). In MAM, S/N values in the southwest

United States are enhanced and expand northward

(Fig. 6b). In JJA (Fig. 6c) and SON (Fig. 6d), however,

the S/N centers are shifted to the central and central-

west United States, with the SON patterns more con-

centrated to the south. Comparing Figs. 5 and 6, one

may find a rough correspondence in the geographical

locations between the higher values of the S/R (Fig. 6)

and correlation skill (Fig. 5) in winter and spring (two

upper rows). This is consistent with the theoretical

results (see Kumar 2009; Kumar et al. 2014a) that

there is a one-on-one correspondence between the two

quantities in a perfect model scenario.

Among the three periods, the S/N ratio is generally

smaller in the first period than in the other two, which

suggests apparent greater predictability in the post-1979

period than during 1958–78. Moreover, although the

forecast skills in DJF (Fig. 5a) and MAM (Fig. 5b) are

lower during 2000–17 (right column) than during 1979–

99 (middle column), their S/N ratios (Figs. 6a,b) are

more similar between these two periods. The lower fore-

cast skills in the U.S. winter–spring precipitation after

2000 are likely associated with the reduced ENSO

forecast skills during the same period, as reported by

many previous studies (e.g., Barnston et al. 2012; Huang

et al. 2017a). Hu et al. (2019) suggest that the lower

ENSO predictive skill since 2000 is due to reduced

ENSO predictability. On the other hand, the lessened

reduction of the S/N ratio of the U.S. precipitation after

2000 may imply the existence of other sources of pre-

dictability, which has yet to be more adequately repre-

sented in the model to compensate for the lost forecast

skill of the U.S. precipitation due to the reduced ENSO

predictability.

In summer and fall, however, the correspondence

between the forecast skill and the S/N ratio is not ob-

vious (two lower rows, Figs. 5 and 6). In fact, both

quantities are small in 1958–78 (left panels, Figs. 5c,d

and 6c,d) and the discrepancies are large between them

in 1979–99 (middle panels, Figs. 5c,d and 6c,d). In 2000–

17, the two variables seem more consistent, with higher

values appearing in the central United States for both

(right panels, Figs. 5c,d and 6c,d). It is also noticeable

that the S/N ratios are slightly enhanced during these

two seasons from the period of 1979–99 to 2000–17.

Since the S/N ratio largely dictates the seasonal pre-

dictability (Jha et al. 2019), it is critical to assess whether

this decomposition of the model total variance is re-

alistic. Since the S/N ratio cannot be estimated directly

from observations, we compare the S/N ratio of CFSv2

with those derived from other model simulations, with

the proposition that consistency among models may

testify representativeness to nature. Figure 7 shows that

the S/N ratio of precipitation from a 20-member en-

semble GFS simulation is qualitatively similar to that of

CFSv2 (Fig. 6). The GFS multidecadal change among

the three periods is also largely consistent with that of

CFSv2, with S/N ratios stronger in 1979–99 but weaker

in 1958–78. There are some differences in details be-

tween CFSv2 and GFS. For instance, compared to

CFSv2, the GFS runs have higher S/N ratio in the Great

Lake area in 1979–99 but show a stronger zonal con-

trast in 1958–78 and 2000–17 during the winter season
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FIG. 5. Spatial distributions for the correlation skill of the seasonal mean precipitation from the ensemble mean for (a) DJF, (b) MAM,

(c) JJA, and (d) SON. (left) 1958–78, (middle) 1979–99, and (right) 2000–17. The shading scale is shown at the bottom of the figure. The

contours outline the areas passing the 95% significance test.

15 DECEMBER 2019 HUANG ET AL . 8613

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:31 PM UTC



FIG. 6. The signal/noise ratio estimated from the ratio between the standard deviation of the ensemble mean and the ensemble de-

partures from the CFSv2 2-month reforecasts for (a) DJF, (b) MAM, (c) JJA, and (d) SON. (left) 1958–78, (middle) 1979–99, and (right)

2000–17. The shading scale is shown at the bottom of the figure.
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FIG. 7. The signal/noise ratio estimated from the ratio between the standard deviation of the ensemble mean and the ensemble de-

partures from the 20-memberGFS simulations for (a) DJF, (b)MAM, (c) JJA, and (d) SON. (left) 1958–78, (middle) 1979–99, and (right)

2000–17. The shading scale is shown at the bottom of the figure.
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(Fig. 7a). Compared with GFS, the S/N ratios of CFSv2

in 1979–99 and 2000–17 are more consistent with those

derived from the CCSM4 seasonal reforecasts for 1982–

99 and 2000–17 in DJF (Fig. 8a), MAM (Fig. 8b), and

SON (Fig. 8d) except for the southwesternUnited States

in DJF. Like CFSv2, the S/N ratios of the CCSM4 re-

forecast also tend to enhance from the early to later

periods in JJA and SON.

Overall, the above comparison shows considerable

model consistency and, based on this comparison, we

argue that the S/N ratio of the CFSv2 reforecast is re-

alistic. The larger discrepancies of CCSM4 with CFSv2

(GFS) in JJA may be attributable to uncertainty asso-

ciated with the former’s smaller ensemble size. We have

also calculated the S/N ratio of the ensemble GFS runs

using all 101 members and found that its S/N pat-

terns (not shown) are almost identical to those shown in

Fig. 7 but the magnitude is somewhat reduced. This

suggests that, even with 20 ensemble members, the re-

sidual noise may still have nonnegligible quantitative

effect if we consider the ensemblemeans. AnMSNEOF

analysis is further applied to mitigate this effect.

Next, we examine the leading patterns of the most

predictable U.S. precipitation in these three periods,

as derived from the MSN EOF analysis on a seasonal

basis. We will show that the first MSN EOF modes de-

rived from each of the four seasons reflect well the basic

characteristics of the S/N ratio distributions. For reasons

that will become clearer later, we start the description

from the fall (SON) season.

Figure 9 shows the first MSN EOFs and MSN PCs for

the three periods, as well as the ensemble member

projections to the former and regression patterns of the

observations to the latter. The spatial patterns of the

MSN EOF modes (i.e., the most predictable patterns)

show similar spatial distributions for the three periods

(right panels, Figs. 9a–c), which feature precipitation

anomalies centered at the coastal region of Texas and

expand inland, especially northward, to CONUS to the

south of 408N. Farther north, major precipitation

anomalies appear in the Pacific Northwest with the

largest anomalies along the coastal region. A unique

feature for 1958–78 is that substantial anomalies oppo-

site to the south also appear in the northeast (right

panel, Fig. 9a).

The peaks of the MSN PCs (Fig. 9d) largely appear in

major ENSO years, including the El Niño years in 1965,

1972, 1982, 1986, 1997, 2009, and 2015 and the La Niña
years in 1964, 1971, 1974, 1989, and 2010. The spread

of the projection time series associated with the en-

semble members (shading in Fig. 9d) is large in all three

periods indicating substantial contribution from internal

variability. To demonstrate whether the level of noise

changes between the ENSO and non-ENSO years, we

have plotted the scatter diagrams between the predicted

ensemble meanNiño-3.4 index and the ensemble spread

of the projected time series. It is found that the noise

level does not change significantly with the magnitude

of the Niño-3.4 index, that is, the noise level does not

change between the ENSO and non-ENSO years (not

shown). This is consistent with the previous studies

(e.g., Hu et al. 2019) that the noise of the predicted SST

anomalies in the Pacific also does not change between

the ENSO and non-ENSO years.

Over the whole domain, the observed regression

pattern to the MSN PC in 2000–16 (left panel, Fig. 9c)

shows the most qualitative resemblance to its corre-

sponding reforecast pattern (right panel, Fig. 9c). The

reforecast patterns for the other two periods, how-

ever, only show similarity to the observations in the

western coastal domain associated with the north–

south contrast.

TheDJF predictable patterns (right panels, Figs. 10a–c)

show a general north–south dipole structure through-

out the continent during all three periods. Superimposed

on this dipole, there are enhanced precipitation anom-

alies in the southeast and southwest, as well as the op-

posite anomalies in the northeast and in northwest

covering Oregon and Washington State and a separate

center near Montana. Compared to SON, the observed

regression patterns (left panels, Figs. 10a–c) bear closer

resemblance to their corresponding MSN EOF patterns

in all three periods. In fact, the main discrepancy be-

tween the model and observations occurred in 2000–16

when the signs of the observed precipitation anomalies

are largely opposite to those of the reforecasts near the

western coast (Fig. 10c). This may be contributed by the

fact that the observed precipitation anomalies in the

winter of 2015/16 strong El Niño events were opposite to
the mean ENSO response over the U.S. southwest

(Chen and Kumar 2018).

The peaks of the MSN PCs (Fig. 10d) are more tightly

linked with the ENSO events. For instance, the El Niño
winters of 1991/92 and 2002/03 are prominent peaks in

the DJF MSN PCs while the SON time series only show

mild positive values in 1991 and 2002. The enhanced

effect of ENSO can be explained by the fact that DJF

is the season with largest ENSO SST anomalies, and

further, tropical–extratropical teleconnections are also

most well defined. It is also interesting to see that the

projections of the ensemble members onto the DJF

MSN EOF modes form tighter envelope around the

MSN PCs, suggesting that the predictable patterns are

more detectable in the individual ensemble members.

This situation is also demonstrated by the better simi-

larity between the DJF MSN EOF patterns and the
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FIG. 8. The signal/noise ratio estimated from the ratio between the standard deviation

of the ensemble mean and the ensemble departures from the 10-member CCSM4

2-month reforecasts of precipitations for (a) DJF, (b)MAM, (c) JJA, and (d) SON. (left)

1982–99 and (right) 2000–17. The shading scale is shown at the bottom of the figure.
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FIG. 9. [(a)–(c), right panels] The spatial patterns of the first MSN EOFmodes for the SONU.S. precipitation in (a) 1958–78, (b) 1979–

99, and (c) 2000–16. The corresponding MSN PCs are shown in (d) for the three periods in the order from left to right. The MSN PCs are

normalized while the MSN EOF patterns have unit mmday21. The percentage of the total variance of the ensemble mean precipitation

anomalies explained by the firstMSNEOFmode is given at the top of the right panels in (a)–(c). Themonth of initialization is given on the

top right of the figure. [(a)–(c), left panels] The spatial distribution for the regressional coefficients of the observed seasonal precipitation

anomalies with the corresponding MSN PCs. The color bar at the bottom of (c) shows the shading scale for the spatial patterns. The

shading in (d) shows the envelope of the projections of all ensemble members onto the MSN EOF spatial patterns.
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FIG. 10. [(a)–(c), right panels] The spatial patterns of the first MSNEOFmodes for the DJFU.S. precipitation in (a) 1958–78, (b) 1979–

99, and (c) 2000–16. The corresponding MSN PCs are shown in (d) for the three periods in the order from left to right. The MSN PCs are

normalized while the MSN EOF patterns have unit mmday21. The percentage of the total variance of the ensemble mean precipitation

anomalies explained by the firstMSNEOFmode is given at the top of the right panels in (a)–(c). Themonth of initialization is given on the

top right of the figure. [(a)–(c), left panels] The spatial distribution for the regressional coefficients of the observed seasonal precipitation

anomalies with the correspondingMSNPCs. The color bar at bottom of (c) shows the shading scale for the spatial patterns. The shading in

(d) shows the envelope of the projections of all ensemble members onto the MSN EOF spatial patterns.
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corresponding observed regression patterns since the

latter may be considered equivalently as a single en-

semble member. Another interesting point to note is

that variations in the spatial pattern in the ensemble

mean (Figs. 10a–c, right panels) are much less than in

observations (Figs. 10a–c, left panels) since the latter is

equivalent to a single realization with stronger influence

of internal variability.

The first MSN EOF patterns in spring (MAM) (right

panels, Figs. 11a–c) share the characteristics with their

DJF counterparts in the general north–south dipole

structure and with resemblance to observations (left

panels, Figs. 11a–c). The unique feature of the MAM

patterns is the northward expansion of the anomalies

in the southwest, especially near the Great Plains,

which was also seen in the S/N ratio distributions

(Fig. 6b). This is possibly associated with the initiation

of the seasonal enhancement of the northward trans-

port of moisture. Similar to DJF, the MAM MSN PCs

also show significant ENSO connection and tight en-

semble envelope. Large precipitation anomalies in Texas

and Great Plains during the spring months of ENSO

onset and decay and the associated atmospheric anom-

alies were discussed in Lee et al. (2014).

On the other hand, the first JJA MSN EOF modes

(Fig. 12) show very different features from those of the

other three seasons. The predictable spatial patterns

in JJA (right panels, Figs. 12a–c) are characterized by

the continental-scale precipitation anomalies centered

at theGreat Plains and theMidwest for all three periods.

These summer precipitation centers have long been

recognized (e.g., Ting and Wang 1997) and are physi-

cally associated with the interannual variability of the

Great Plains low-level jet (GPLLJ) (e.g., Harding and

Snyder 2015), the ENSO influence (e.g., Barlow et al.

2001), and the meridional moisture transport by the

fluctuations of the North Atlantic subtropical high

(e.g., Li et al. 2018). The observed regression patterns

(right panels, Figs. 12a–c) generally do not show a sub-

stantial resemblance to the model predictable patterns,

except formaybe the 2000–17 when somewhat enhanced

variability in the central United States was observed

(left panel, Fig. 12c). The MSN PCs (Fig. 12d) show

major positive years (1969, 1972, 1983, 1993, 1997, 2000,

and 2015) and major negative years (1963, 1964, 1971,

1977, 1981, 1988–91, 2010, and 2013) that are partially,

but not exclusively associated with warm and cold

ENSO events, respectively. It is also noticeable that the

envelope of the ensemble member projections is sig-

nificantly wider in JJA than in other seasons. Within the

JJA season, the spread is also notably larger in 1958–78

and, correspondingly, the explained variance is smallest

in this period.

In summary, the above analysis shows a substantial

seasonal dependence of the predictable patterns in the

U.S. precipitation. The predictability and prediction

skill of the U.S. precipitation are generally higher in

DJF and MAM. The most predictable patterns in

these seasons feature a characteristic north–south di-

pole structure with enhancements in the east and west

regions. The co-occurrence of the MSN-EOF peaks and

the major ENSO events suggests a significant influence

of the latter in these seasons. This is consistent with the

ENSO composites of the NMME predictions (Chen

et al. 2017). The SON modes show a somewhat differ-

ent spatial pattern and weaker ENSO influence. The

JJA patterns, on the other hand, are more distinctive

from the other seasons and suggest lower predictability

and prediction skill. The analysis also demonstrates

substantial multidecadal change in the model’s predic-

tive skill and predictability, with apparent greater pre-

dictability in the post-1979 periods, especially 1979–99,

than during 1958–78.

5. Oceanic forcing to the seasonal predictability of
U.S. precipitation

In this section, we further investigate the connec-

tions between the predictable patterns of the U.S. sea-

sonal precipitation and the global SST anomalies in the

reforecasts and observations on a seasonal basis. In

the left panel of Fig. 13a, the lead–lag correlations are

generally high (.0.6) between the SON MSN PC1 and

the model monthly mean Niño-3.4 index stratified by

calendar month throughout the forecast duration from

July(0) to June(11). Hereafter, the number (21, 0,11)

in the parentheses next to a calendar month indicates

the previous, present, and next year, respectively. The

correlations peak in SON to 0.8–0.9 for all three pe-

riods and then decrease gradually to 0.6 for 1958–78

(red curve) and 1979–99 (blue curve) but still above

0.8 for 2000–16 (green curve). As a comparison, we also

show the lead–lag correlations of the SON MSN PC1

with the observed Niño-3.4 index for a broader range

from October(21) to September(11). It can be seen

that the MSN PC1 in SON is highly correlated (above

0.8) with the Niño-3.4 index from June(0) to May(11)

in the periods of 1979–99 (blue curve) and 2000–16

(green curve) and decreases quickly before and after

this episode. For 1958–78, the high correlation (red

curve) is from June(0) to December(0), decreasing

earlier than the other two periods, and than its model

counterpart (red curve, left panel, Fig. 13a). For both

the model and observations, the duration of the sus-

tained high correlation and phase lock to the calendar

months correspond to the lifespan of a typical ENSO
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FIG. 11. [(a)–(c), right panels] The spatial patterns of the first MSN EOF modes for the MAM U.S. precipitation in (a) 1958–78,

(b) 1979–99, and (c) 2000–17. The correspondingMSN PCs are shown in (d) for the three periods in the order from left to right. TheMSN

PCs are normalized while the MSN EOF patterns have unit mmday21. The percentage of the total variance of the ensemble mean

precipitation anomalies explained by the first MSNEOFmode is given at the top of the right panels in (a)–(c). The month of initialization

is given on the top right of the figure. [(a)–(c), left panels] The spatial distribution for the regressional coefficients of the observed seasonal

precipitation anomalies with the corresponding MSN PCs. The color bar at bottom of (c) shows the shading scale for the spatial patterns.

The shading in (d) shows the envelope of the projections of all ensemble members onto the MSN EOF spatial patterns.
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FIG. 12. [(a)–(c), right panels] The spatial patterns of the first MSN EOFmodes for the JJAU.S. precipitation in (a) 1958–78, (b) 1979–

99, and (c) 2000–17. The corresponding MSN PCs are shown in (d) for the three periods in the order from left to right. The MSN PCs are

normalized while the MSN EOF patterns have unit mmday21. The percentage of the total variance of the ensemble mean precipitation

anomalies explained by the firstMSNEOFmode is given at the top of the right panels in (a)–(c). Themonth of initialization is given on the

top right of the figure. [(a)–(c), left panels] The spatial distribution for the regressional coefficients of the observed seasonal precipitation

anomalies with the correspondingMSNPCs. The color bar at bottom of (c) shows the shading scale for the spatial patterns. The shading in

(d) shows the envelope of the projections of all ensemble members onto the MSN EOF spatial patterns.
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FIG. 13. (a) (left) The correlation coefficients of the SON MSN PC1 with the model Niño-3.4 index of specific

calendar months from July(0) to June(11). (right) Its correlation with the observed Niño-3.4 index from

October(21) to September(11). Here, the number (21, 0,11) in the parentheses indicates the previous, present,

and next year, respectively. The red, blue, and green curves correspond to the correlations in 1958–78, 1979–99, and

2000–16. (b)–(d) The spatial distributions of the correlation coefficients of the seasonal mean SST anomalies for

SON [vertical shading in (a)] with MSN PC1 for the (left) ensemble mean reforecasts and (right) observations for

(b) 1958–78, (c) 1979–99, and (d) 2000–16. The contours in (b)–(d) correspond to the 95% statistical significance

level. The color bar for (b)–(d) is shown at the bottom of the figure.
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event and the shorter duration with the observed Niño-
3.4 in 1958–78 reflects the early termination of the ob-

served ENSO events during this period, a phenomenon

that is not well captured by the reforecasts (e.g., Huang

et al. 2017a).

Since the seasonal mean precipitation anomalies are

more likely due to the contemporary, instead of pre-

vious SST forcing, Figs. 13b–d show the global distri-

butions of the correlations between the SON MSN

PC1 and the mean SST anomalies of the same season

from the ensemble mean reforecasts (left panels) and

the observations (right panels) for 1958–78 (Fig. 13b),

1979–99 (Fig. 13c), and 2000–16 (Fig. 13d). The gen-

eral patterns of the correlation are quite similar among

the three periods. There is also high resemblance be-

tween the model reforecasts and the observations al-

though the former generally show higher correlations

due to ensemble averaging. In the Pacific, warm SST

anomalies associated with positive MSN PC1 are lo-

cated in the central-to-eastern tropical Pacific and ex-

tend northward to the North Pacific near the North

American coast. The cold SST anomalies form a V-shape

pattern centered near the Maritime Continent and ex-

tending eastward and poleward into extratropical ocean

in both hemispheres. This warm and cold SST distribu-

tion is clearly ENSO-like. Moreover, the tropical SST

anomalies seem to show broader meridional widths in

the central and eastern Pacific, which are the charac-

teristic of the Pacific decadal SST fluctuations described

in Zhang et al. (1997) and Deser et al. (2004). The cold

SST anomalies near the western Pacific extend into the

eastern equatorial IndianOcean near the Sumatra coast,

which, together with the warm SST anomalies in the

western Indian Ocean, form the Indian Ocean dipole

(IOD) pattern that peaks in SON (Saji et al. 1999). This

suggests a tight connection between the Pacific and

Indian Ocean (e.g., Huang and Kinter 2002), espe-

cially during the earlier two periods. In comparison,

the Atlantic SST anomalies are not significantly cor-

related with the MSN PC1 except for 2000–16, when a

negative AMV pattern seems to prevail during the

positive phases of the latter (Fig. 13d). The Atlantic

influence is relatively weak in SON because the SST

anomalies in the northern tropical Atlantic in response

to ENSO are strongest in April–June (e.g., Enfield and

Mayer 1997).

Similar lead–lag Niño–MSN PC correlations can be

seen for the DJF (Fig. 14a) and MAM (Fig. 15a) cases.

The fact that the high correlations for these two sea-

sons occur in exactly the same lead–lag months confirms

the central role of the ENSO forcing. The contempo-

rary correlation maps of the SST anomalies and the

MSN PCs (Figs. 14b–d and 15b–d) also show somewhat

similar features to those described for SON. On the

other hand, the SST anomalies are more centered in

the central and eastern equatorial Pacific and seem

to show narrower meridional span than their SON

counterparts, suggesting a stronger ENSO influence in

these two seasons. Other distinctive features of the

DJF and MAM correlation patterns include stronger

positive correlations in the tropical Atlantic Ocean

(especially in the reforecasts), the expansion of the

positive correlations from the west to the whole ba-

sin of the tropical Indian Ocean (Huang and Kinter

2002; Zhu et al. 2015; Shin et al. 2019), the stronger

South Pacific dipole (Guan et al. 2014), and the South

Atlantic dipole (Huang 2004). One should note that

these features are generally associated with the ENSO

global teleconnection, which are strongest in these

two seasons (Kumar et al. 2014b). Therefore, whether

these SST anomalies provide additional oceanic forc-

ing to the U.S. seasonal precipitation need further

investigation.

The lead–lag correlations of the JJA MSN PC1 with

Niño-3.4 (Fig. 16a) show quite different characteris-

tics from the other three seasons. Furthermore, there is a

clear distinction between the periods of 1958–78 (red

curve) and 1979–99 (blue curve) and the last period

(2000–17, green curve) for both the reforecasts and

the observations. In the first two periods, the model

correlations (left panel, Fig. 16a) peak in April at 0.4

in 1958–78 (red curve) and in June at 0.7 in 1979–99

(blue curve) before decaying quickly in the next few

months. In 2000–17 (green curve), however, the model

correlation increases from 0.2 in April quickly to above

0.7 in June andmaintains near this level until the coming

April, which seems more consistent with the time span

of a typical ENSO event. Similar patterns emerge in the

correlations of the JJA MSN PC1 with the observed

Niño-3.4, except that the peaking correlations for the

1958–78 and 1979–99 periods occur in February and

the sustained higher-level correlations for 2000–17 start

in March. One of the complicating factors for ex-

plaining the correlation patterns is that, statistically, the

JJA season can be influenced by the decaying ENSO

anomalies associated with the terminating events in

some years but by the growing ENSO anomalies asso-

ciated with the emerging anomalous events in some

other years (Kumar and Hoerling 2003). For the two

periods with relatively high correlations, we speculate

that the 1979–99 period is dominated by the former

situation while the most recent period by the latter.

The later times of the peaking correlation in the refor-

ecasts may possibly be due to the influences of the initial

shock, which seems to be stronger during the seasonal

transition from spring to summer than other seasonal
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FIG. 14. (a) (left) The correlation coefficients of the DJF MSN PC1 with the model Niño-3.4 index of specific

calendar months fromOctober(0) to September(11). (right) Its correlation with the observed Niño-3.4 index from
January(0) to December(11). Here, the number (21, 0,11) in the parentheses indicates the previous, present, and

next year, respectively. The red, blue, and green curves correspond to the correlations in 1958–78, 1979–99, and

2000–16. (b)–(d) The spatial distributions of the correlation coefficients of the seasonal mean SST anomalies for

DJF [vertical shading in (a)] with MSN PC1 for the (left) ensemble mean reforecasts and (right) observations for

(b) 1958–78, (c) 1979–99, and (d) 2000–16. The contours in (b)–(d) correspond to the 95% statistical significance

level. The color bar for (b)–(d) is shown at the bottom of the figure.
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FIG. 15. (a) (left) The correlation coefficients of the MAM MSN PC1 with the model Niño-3.4 index of specific

calendar months from January(0) to December(0). (right) Its correlation with the observed Niño-3.4 index from

April(21) toMarch(11). Here, the number (21, 0,11) in the parentheses indicates the previous, present, and next

year, respectively. The red, blue, and green curves correspond to the correlations in 1958–78, 1979–99, and 2000–17.

The vertical shading indicates the season the MSN PC1 represents. (b)–(d) The spatial distributions of the cor-

relation coefficients of the seasonal mean SST anomalies for MAM [vertical shading in (a)] with MSN PC1 for

the (left) ensemble mean reforecasts and (right) observations for (b) 1958–78, (c) 1979–99, and (d) 2000–17. The

contours in (b)–(d) correspond to the 95% statistical significance level. The color bar for (b)–(d) is shown at the

bottom of the figure.
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FIG. 16. (a) (left) The correlation coefficients of the JJA MSN PC1 with the model Niño-3.4 index of specific

calendar months from April(0) to March(11). (right) Its correlation with the observed Niño-3.4 index from

April(21) toMarch(11). Here, the number (21, 0,11) in the parentheses indicates the previous, present, and next

year, respectively. The red, blue, and green curves correspond to the correlations in 1958–78, 1979–99, and 2000–17.

(b)–(d) The spatial distributions of the correlation coefficients of the seasonal mean SST anomalies for AMJ

[marked by the yellow shading in (a)] with MSN PC1 for the (left) ensemble mean reforecasts and (right) obser-

vations for (b) 1958–78, (c) 1979–99, and (d) 2000–17. (e) The correlation for JJA [marked by the space between the

two vertical dashed lines in (a)]. The green box in the right panel of (e) outlines the averaging area for the TNA

index. The contours in (b)–(e) correspond to the 95% statistical significance level. The color bar for (b)–(e) is shown

at the bottom of the figure.
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transition (e.g., winter–spring transition) (e.g., Shukla

et al. 2018).

Given these different correlation patterns, we have

further examined the spatial distribution of the cor-

relations between the JJA MSN PC1 with the SST

anomalies averaged in April–June (AMJ) for all three

periods (Figs. 16b–d) and JJA for 2000–17 (Fig. 16e).

It is reassuring that the spatial patterns of the corre-

lation are similar between the reforecasts and the ob-

servations. Furthermore, the correlation patterns for

1958–78 (Fig. 16b) and 1979–99 (Fig. 16c) are similar

while the magnitudes are weaker and statistically in-

significant during the former period. In general, the

distributions of the SST anomalies in the Pacific during

AMJ are similar to those from the other seasons al-

though the correlations are confined in the tropics.

This seems to confirm that they represent the residual

ENSO influences at the terminating stage of the anom-

alous events. The 1958–78 correlations are weaker than

the 1979–99 ones because the ENSO events in the for-

mer period generally terminated earlier (e.g., Huang

et al. 2017a).

The correlation patterns seem more complicated

during 2000–17. In AMJ (Fig. 16d), the SST anomalies

in the central and eastern tropical Pacific are gener-

ally broader with two symmetric maxima on both sides

off the equator associated with the Rossby waves re-

flected from the eastern boundary characterizing the

decaying ENSO events. In addition, the significant SST

anomalies near the North America coast also make this

pattern similar to the Pacific decadal variability as de-

scribed by Zhang et al. (1997), suggesting a stronger

influence of the lower-frequency SST fluctuations,

such as the PDO. Interestingly, the decadal-like pattern

is enhanced in the coming JJA (Fig. 16e) as the off-

equatorial SST anomalies become less obvious. Another

interesting fact for 2000–17 is the significant negative

correlation in the tropical Atlantic Ocean to the north

of the equator during 2000–17. Overall, the correlation

pattern in the North Atlantic is negative to the AMV,

or the summer horseshoe pattern, although the extra-

tropical nodes are not statistically significant. One pos-

sibility is that the AMJ condition in the tropical Atlantic

is linked to the La Niña state in the previous winter,

while a weak contemporary warming occurs in the trop-

ical Pacific due to an El Niño onset. Such transitioning

from La Niña to El Niño (or El Niño to La Niña) does
occur quite frequently in nature as shown, for example,

in Lee et al. (2018, their Fig. 2). The opposite correla-

tions between the tropical Pacific and the tropical North

Atlantic have been identified as a major forcing factor

of the U.S. precipitation in summer (e.g., Schubert et al.

2008; Mo et al. 2009).

To quantify the roles played by the SST anomalies in

the tropical North Atlantic (TNA), we define a TNA

index as the SST anomalies averaged in 58–258N, 158–
608W (the green box in the right panel of Fig. 16e).

Figure 17 shows its lead–lag correlations with the MSN

PCs in different seasons for both the reforecasts and

observations, in the same way as with the Niño-3.4 in-

dex. The patterns of correlation with the reforecast

(left panels) and observed (right panels) TNA show

some similarity. We will concentrate on the former be-

cause the latter has larger uncertainty. For the DJF

(left panel, Fig. 17b) and MAM (left panel, Fig. 17c)

predictions (initialized in October and January, re-

spectively), the MSN PC correlations with TNA are

initially small but increase in the spring season quickly

to above 0.6. Its peaking correlation has the same sign

as its correlation with Niño-3.4. This relationship, held
for all three periods, suggests that TNA SST could be a

response to ENSO and may not add predictability to

the U.S. precipitation in winter–spring. For the JJA

prediction (left panel, Fig. 17d), the MSN PC-TNA

correlations are still positive but smaller in 1958–78

(red curve) and 1979–99 (blue curve). During 2000–17,

however, the MSN PC1 for JJA is negatively correlated

with TNA at around 20.6 from April to July (green

curve, left panel, Fig. 17d) while its correlation with

Niño-3.4 is weakly positive during these months (green

curve, left panel, Fig. 16a). Therefore, since the 2000s,

TNA has shown a different influence on the U.S. sum-

mer precipitation. This change can also be seen, to a

lesser extent, in SON (left panel, Fig. 17a).

We have also examined the correlations of the

MSN PC1 in different seasons with the MSLP and

200-hPa geopotential height anomalies that charac-

terize the lower- and upper-level patterns of the at-

mospheric circulation. The ENSO influence through

the atmospheric planetary waves is detectable from

DJF to MAM. Figure 18 shows the correlation patterns

of theDJFMSNPC1with the seasonalMSLP anomalies

for the reforecasts (left panels) and the observations

(right panels) during the three periods. The qualitative

similarity between the model and the observed patterns,

especially in the Pacific, are remarkable.

In the tropics, the pattern of the Southern Oscillation

dominates the MSLP anomalies with negative correla-

tions in the central-to-eastern Pacific and positive cor-

relations in the western Pacific and Indian Ocean. The

extratropical patterns of the MSLP anomalies reflect

the atmospheric teleconnections similar to the Pacific–

North American (PNA; Straus and Shukla 2002) and

Pacific–South American (PSA; Guan et al. 2014) pat-

terns. These anomalous MSLP patterns are closely

linked to the SST anomalies as shown in Figs. 14b–d and
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generated by the SST-induced tropical heating. Espe-

cially, the PNA pattern associated with ENSO is dis-

tinguished from the one by the atmospheric internal

variability in spatial structures (Straus and Shukla 2002

and influences on the U.S. precipitation (Cook et al.

2018). Lopez and Kirtman (2019) also demonstrated this

point using interactive ensemble simulations. The PNA

and PSA patterns are also identifiable on the correla-

tions of the DJF MSN PC1 with the 200-hPa geo-

potential height anomalies (not shown). In the tropics,

a global band of positive correlations emerges as a typ-

ical ENSO response in the upper-level atmosphere

(Yulaeva and Wallace 1994). Physically, the most rele-

vant signals to the U.S. precipitation are the MSLP

FIG. 17. (left) The lead–lag correlation coefficients between the reforecastmonthly TNA index and theMSNPC1

for (a) SON, (b) DJF, (c) MAM, and (d) JJA during the period of 12-month forecast. (right) The MSN PC1

correlations with the observedmonthly TNA index for a period of 24 months bracketing the corresponding season.

The red, blue, and green curves correspond to the correlations in 1958–78, 1979–99, and 2000–17.

15 DECEMBER 2019 HUANG ET AL . 8629

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:31 PM UTC



centers of the negative correlations in the western and

eastern coast of the North America, as well as in the

eastern tropical Pacific. This combination generally

causes increased precipitation in the southwest and

southeast United States during the winter of an El Niño
year. In addition to the seasonal mean anomalies, a

corresponding shift of the Pacific–North American

storm track can also generate a transient eddy moisture

flux divergence in the southern United States (Seager

and Hoerling 2014; Feng et al. 2019).

Among the three periods, the reforecasts are very

consistent with each other in the Pacific domain (left

panels, Fig. 18). However, there are no correlations

in the tropical Atlantic and Indian Oceans in 1958–

78 (left panel, Fig. 18a) although the correlations are

significant in these areas in the later periods (left

panels, Figs. 18b and 18c), as well as in the tropical

Indian Ocean for the observational correlations in

1958–78 (right panel, Fig. 18a). The highest similar-

ity between the reforecasts and the observations oc-

cur in 1979–99 (Fig. 18b), when the ENSO cycle was

most active.

The correlation patterns of the MAM MSN PC1 with

the atmospheric circulations in the lower and upper

levels (not shown) are quite similar to those in DJF, as

the ENSO-related SST anomalies are quite persistent

from boreal winter to spring. However, although the

winter–spring ENSO anomalies in the eastern-central

tropical Pacific can persist into boreal summer, the tel-

econnections associated with the planetary wave trains

are weakened after boreal spring because the atmo-

spheric mean state is changed (e.g., Kumar andHoerling

1998). Moreover, as we have discussed before, the

SST anomalies in the equatorial Pacific associated with

FIG. 18. The spatial distributions of the correlation coefficients of the mean sea level pressure (MSLP) anomalies

for DJF with the DJF MSN PC1 for the (left) ensemble mean reforecasts and (right) observations for (a) 1958–78,

(b) 1979–99, and (c) 2000–16. The contours correspond to the 95% statistical significance level. The color bar is

shown at the bottom of the figure.
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the emerging ENSO events may still be weak and

feature different spatial patterns at this stage. As a

result, the teleconnections in the extratropical atmo-

sphere are largely statistically insignificant during JJA

in the Northern Hemisphere. On the other hand, the

patterns of Southern Oscillation are still detectable in

the correlation maps of the MSN PC1 with the MSLP

anomalies in JJA during 1979–99 (Fig. 19b) and 2000–

17 (Fig. 19c), although the correlations are generally

low in 1958–78 (Fig. 19a). More interestingly, statisti-

cally significant positive correlations also appear in the

tropical North Atlantic in the reforecasts for 2000–17

(left panel, Fig. 19c), roughly consistent with the ob-

servations (right panel, Fig. 19c). This correlation

pattern is similar to the observational pattern of the

SLP anomalies associated with the tropical North

Atlantic SST anomalies during the summer seasons

(April–September) of 1979–2007 derived by Kushnir

et al. (2010) using a multiple regression analysis (their

Fig. 2b). It is interesting to note that the resemblance

of our and Kushnir et al.’s (2010) patterns are not

confined in the tropical Atlantic and North America

but also in the Pacific domain. Similar Atlantic influ-

ence is also detectable in SON during this period (not

shown), although the ENSO influence becomes more

dominant again.

6. Summary and discussion

In this paper, we analyzed a set of ensemble seasonal

reforecasts for 1958–2017 using CFSv2 to evaluate the

predictive skill of the U.S. seasonal precipitation and

examine its sources of predictability. Our analysis is

conducted for each of the three periods of 1958–78,

FIG. 19. The spatial distributions of the correlation coefficients of the mean sea level pressure (MSLP) anomalies

for JJA with the JJA MSN PC1 for the (left) ensemble mean reforecasts and (right) observations for (a) 1958–78,

(b) 1979–99, and (c) 2000–17. The contours correspond to the 95% statistical significance level. The color bar is

shown at the bottom of the figure.
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1979–99, and 2000–17, corresponding to three PDO

phases during the past 60 years. It is found that the en-

semble reforecasts at two-month lead realistically sim-

ulate the patterns of the U.S. seasonal precipitation

variance. They also reproduce the spatial distribution

of the winter precipitation trends throughout the past

60 years and the continental-scale increase of summer

precipitation since the 2000s. The correlation skill

shows that seasonal precipitation in the United States is

better predicted in the winter and spring than in the

summer and fall, although the latter still show sub-

stantial skillful areas.

The S/N ratio of the CFSv2 precipitation also shows

strong seasonal dependence that is consistent with

other climatemodels. We further applied theMSNEOF

analysis to identify the large-scale patterns of the U.S.

predictable precipitation signals. In winter and spring,

the most predictable patterns feature a north–south di-

pole throughout the United States with enhancements

in the eastern and western areas. The summer and fall

patterns are respectively dominated by the anomalies

in the central and southern United States. In verifica-

tion with observations, the winter–spring patterns are

more skillful. The ENSO influences on these predict-

able patterns are detectable from fall to the subsequent

spring but most dominant in winter and spring. The

seasonality of the U.S. precipitation predictability and

its ENSO dependence confirm the previous AGCM re-

sults (e.g., Quan et al. 2006; Seager and Hoerling 2014;

amongmany others), but in amore realistic framework of

coupled reforecast, which takes into account the SST

seasonal predictability, the coupled ocean–atmosphere

feedback and the effects of initialization and model

climate drift.

Our results also show other sources of predictabil-

ity during summer and fall, when the ENSO effect is

weaker. Interestingly, these potential sources seem

to count for the multidecadal change of the seasonal

prediction skill and predictability. Among the three

periods, the predictive skill of the U.S. precipitation

is highest during 1979–99 while the S/N ratio reveals

apparent greater predictability in the post-1979 pe-

riods than during 1958–78. The phase of PDO can be a

dominant factor associated with the enhanced predi-

cation skill in 1979–99 and reduced skill in 1958–78.

Furthermore, since the 2000s, the forcing from the

summer SST anomalies in the tropical North Atlantic

has become more significant and shown an opposite

sign to those in the tropical Pacific forcing. Although

the MSN PC1s are more strongly correlated with the

tropical Atlantic SST anomalies during winter and

spring than in summer, the correlations generally have

the same sign as those in the central and eastern

tropical Pacific, implying that the contributing Atlantic

SST anomalies are mostly generated by ENSO them-

selves (e.g., Huang et al. 2002). Since the positive SST

anomalies in the tropical North Atlantic tend to reduce

the precipitation in the United States for both the

winter and summer (e.g., Kushnir et al. 2010), these

Atlantic anomalies are most likely to play a moderating

role in the ENSO-induced precipitation anomalies in the

United States. During summer, on the other hand, the

tropical North Atlantic SST anomalies showed weak

positive correlations with the U.S. precipitation during

1958–99 but emerged as a more distinctive source of

the U.S. rainfall predictability since 2000. From this per-

spective, the future contributions of the AMV and PDO

to the U.S. precipitation in summer should be further

explored.

The multidecadal change of the U.S. precipitation

predictability may also be caused by the long-term

change of the ENSO predictability. Barnston et al.

(2012) found that the real-time ENSO predictions dur-

ing 2002–11 have lower skills than the ones for the 1980s

and 1990s. This multidecadal change has been con-

firmed by other analyses of the reforecast datasets for

the past 30 years or so and generally attributed to the

reduced predictability due to weaker ENSO signals af-

ter 2000 (e.g., Hu et al. 2019). The same argument may

also explain the lower predictability in 1958–78 since

the ENSO variability then was weaker than in 1979–99.

However, examining our longer CFSv2 reforecasts for

1958–2014, Huang et al. (2017a) found that the ENSO

prediction skill in 1958–78 is comparable to that for

1979–2014 for the onset and development of ENSO

events but the skill of the earlier predictions declines

faster when passing through spring. This is because

current models tend to make a prototype of the ENSO

events in the 1980s and 1990s and, even initialized with

the observation-based states in 1958–78, usually predict

more persistent SST anomalies in the ENSO de-

caying phase than the observed ones during this period.

Therefore, the inability of the coupled forecast models

in recognizing the multidecadal change of the ENSO

characteristics can be another source of the reduced

skills of ENSO, and thus, for U.S. precipitation in 1958–

78 and 2000–17.

Overall, based on a longer reforecast dataset, the

study is an attempt to 1) compare estimates and sources

of predictability against earlier results and 2) assess the

low-frequency variability in skill of U.S. precipitation

similar to those done by Weisheimer et al. (2017) for

NAOand byHuang et al. (2017a) for ENSO. Even if our

results may mainly conform to earlier results of rela-

tively low predictability and the fact that precipitation

skill generally has been flatlined for the past two decades,
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our results still contribute toward ultimately resolving the

ongoing debate on whether low skill for seasonal pre-

cipitation is due to limits of seasonal predictability or

is a consequence of errors in seasonal forecast systems

(i.e., predictability is higher but it is not being realized

because of biases in forecast systems). As we are well

aware, the question of the limits of seasonal pre-

dictability cannot be resolved from first principles

or from the analysis of observational data alone, and

convergence toward an answer has to rely on repeated

assessments of seasonal predictability in newer gener-

ation of models, analysis based on multimodel systems

and longer and longer reforecasts. Therefore, we be-

lieve that the results of this analysis contribute to the

current knowledge base on the assessment of seasonal

predictability toward ultimately resolving the question

of its limits.

We would also like to offer the following thoughts on

how the results from this analysis can be relevant in

developing pathways for generating more skillful pre-

dictions or informing practitioners of seasonal pre-

diction. Admittedly, based on a long history of research

in the sources of seasonal predictability, it is now

well established that ENSO is the most dominant source

of predictability. It is also very likely (and if progress in

seasonal predictions made in the last 20 years is any

indication) that improvements in seasonal prediction

skill beyond the linear composite signal related to

ENSO will charter a path of slow evolution. Further

exploring ENSO as a skill source of the U.S. seasonal

forecast is likely to focus on the different flavors of

ENSO (e.g., Johnson 2013), and the possibility that

their influences on U.S. seasonal climate will be mate-

rially different from the linear composite signal. If

such a diversity in responses to ENSO flavors is estab-

lished, then incorporating such influences will improve

the capability of modern coupled forecast systems in

realizing seasonal predictability. Harvesting these ad-

ditional sources of seasonal prediction skill related to

ENSO flavors incrementally, and further, placing our

confidence in signals beyond ENSO will once again

require repeated analysis using newer generation of

models, analysis based on multimodel systems and

longer and longer reforecasts. The process of devel-

oping confidence in signals beyond canonical ENSO

patterns, though slow, is a necessary process because,

in its absence, forecast practitioners will continue to

fall back on the information contained in ENSO com-

posites and ignore indications of model responses be-

yond ENSO. To reach a stage where signal inferred

based on dynamical models can deliver useful informa-

tion beyond canonical ENSO patterns, and further,

forecast practitioners can place confidence in them

(and thereby, make use of the information) is the con-

text that the results from this analysis will eventually

have their usefulness.

In this study, we focused on the oceanic forcing

factors to the U.S. seasonal prediction. Other sources

of predictability, such as land–atmosphere feedbacks

arising from the memory in soil moisture and/or snow-

pack, can also play important roles in additional skill

(Roundy and Wood 2015; Dirmeyer and Halder 2016).

On the other hand, the influence of internal atmospheric

variability (e.g., Coats et al. 2013; Stevenson et al. 2015;

Jha et al. 2019) is a major factor that limits the pre-

dictability and prediction skill of the U.S. precipitation.

In addition to these factors, the limit of global SST

prediction skill and the bias in predicted SST patterns

(e.g., Kumar et al. 2012; Xue et al. 2013; Shin and

Huang 2019) also prevent more accurate precipitation

forecasts. These issues will be examined in our further

analysis of these datasets.

Beyond the statistical pattern analysis, further prog-

ress can be made through more detailed case analy-

sis. For instance, numerous analyses (e.g., Chen and

Kumar 2018; Zhang et al. 2018b) have been done to

examine the California drought events in the 2015/16

El Niño winter when the regional precipitations did

not conform to the expected El Niño response as de-

scribed in this paper. A preliminary examination of our

reforecasts shows that the situation in the 2015/16 win-

ter is not unique. For instance, a typical California

drought also occurred in 1963/64 during a major El Niño
winter. In both cases, an anomalous anticyclone in the

subtropical northeastern Pacific contributed to depar-

ture in the observed precipitations over California from

the canonical El Niño response pattern. Although the

model ensemble mean prediction missed this feature

in both cases, we found that some ensemble members of

the reforecasts in 2015/16 had better predictions of the

regional precipitation with a relatively minor northward

shift of the El Niño–induced anomalous center of low

sea level pressure off the North America coast. Further

case studies are in progress and will be reported in

due course.
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